Adding a TPM to My Offline Certificate Authority

Back at the start of last year, I built an offline Certificate Authority based around Pi Zero and a RTC module.

The idea was to run the CA on the pi that can only be accesses when it’s plugged in via a USB cable to another machine. This means that the CA cert and private key are normally offline and only potentially accessible by an attacker when plugged in.

For what’s at stake if my toy CA gets compromised this is already overkill, but I was looking to see what else I could do to make it even more secure.


A TPM or Trusted Platform Module is a dedicated CPU paired with some dedicated NVRAM. The CPU is capable of doing some pretty basic crypto functions, provide a good random number generator and NVRAM is used to store private keys.

TPM & RTC on a Raspberry Pi Zero

TPMs also have a feature called PCRs which can be used to validate the hardware and software stack used to boot the machine. This means you can use this to detect if the system has been tampered with at any point. This does require integration into the bootloader for the system.

You can set access policies for keys protected by the TPM to allow access if the PCRs match a known pattern, some Disk Encryption systems like LUKS on Linux and Bitlocker on Windows1 can use this to automatically unlock the encrypted drive.

You can get a TPM for the Raspberry Pi from a group called LetsTrust (that is available online here).

It mounts on to the SPI bus pins and is enabled by adding a Device Tree Overlay to the /boot/config,txt similar to the RTC.


Since the Raspberry Pi Bootloader is not TPM aware the PCRs are not initialised in this situation, so we can’t use it to automatically unlock an encrypted volume.

Using the TPM with the CA

Even without the PCRs the TPM can be used to protect the CA’s private key so it can only be used on the same machine as the TPM. This makes the private key useless if anybody does manage to remotely log into the device and make a copy.

Of course since it just pushes on to the Pi header if anybody manages to get physical access they can just take the TPM and sdcard, but as with all security mechanisms once an attacker has physical access all bets are usually off.

There is a plugin for OpenSSL that enables it to use keys stored in the TPM. Once compiled it can be added as OpenSSL Engine along with a utility called tpm2tss-genkey that can be used to create new keys or an existing key can be imported.

Generating New Keys

You can generate a new CA certificate with the following commands

$ tpm2tss-genkey -a rsa -s 2048 ca.tss
$ openssl req -new -x509 -engine tpm2tss -key ca.tss  -keyform engine -out ca.crt

This certificate can now be used to sign CSRs

$ openssl ca -config openssl.cnf -engine tpm2tss -key ca.tss -keyform engine -in cert.csr -out cert.pem

Importing Keys

For an existing ca.key private key file.

$ tpm2_createprimary --hierarchy=o --hash-algorithm=sha256 --key-algorithm=rsa --key-context=primiary_owner_key.ctx
$ HANDLE=$(tpm2_evictcontrol --hierarchy=o --object-context=primiary_owner_key.ctx | cut -d ' ' -f 2 | head -n 1)
$ tpm2_import -C primiary_owner_key.ctx -G rsa -i ca.key -u ca-pub.tpm -r ca.tpm
$ tpm2tss-genkey --public ca-pub-tpm --private ca.tpm --parent $HANDLE --password secret ca.tss

And we can then sign new CSRs the same way as with the generated key

$ openssl ca -config openssl.cnf -engine tpm2tss -key ca.tss -keyform engine -in cert.csr -out cert.pem

Once the keys have been imported the it’s important to remember to clean up the original key file (ca.key) so any attacker can’t just use them instead of using the one protected by the TPM. Any attacker now needs both the password for the key and the TPM device that was used to cloak it.

Web Interface

At the moment the node-openssl-cert node that I’m using to drive the web interface to CA doesn’t look to support passing in engine arguments so I’m having to drive it all manually on the command line, but I’ll be looking at a way to add support to the library. I’ll try and generate a pull request when I get something working.

1Because of it’s use with Bitlocker, a TPM is now required for all machines that want to be Windows 10 certified. This means my second Dell XPS13 also has one (it was an optional extra on the first version and not included in the Sputnik edition)

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.